

STEP for Electronics

Boeing Space & Communications Group

Gregory L. Smith

NASA's STEP for Aerospace Workshop

At

Jet Propulsion Laboratory Pasadena, CA

January 25th, 2000

Agenda

Space & Communications

Electronics Computing Support

AP 210 Development

Past AP 210 Activities

Present AP 210 Activities

Future AP 210 Activities

Questions & Answers

1/25/2000

Boeing - STEP for Electronics

STEP AP 210 Activities Timeline

Sample PWA from 777

Space & Communications

E Electronics Computing Support

A (Very) Rough Comparison of Standards

AP 210

Space & Communications

Electronics Computing Support

Electrical Assembly Interconnect and Packaging Design

Physical

- Component Placement
- Bare Board Design
- Layout templates
- Layers non-planar, conductive & non-conductive
- Material product

Geometry

- Geometrically Bounded 2-D
- Wireframe with Topology
- Surfaces
- Advanced BREP Solids
- Constructive Solid Geometry

Design Control

 Geometric Dimensioning and Tolerancing

Product Structure/ Connectivity

- Functional
- Packaged

Part

- Functionality
- Analysis Support
- Shape 2D, 3D
- Package
- Material Product
- Properties

Configuration Mgmt

- Identification
- Authority
- Effectivity
- Control
- Requirement Traceability
- Analytical Model
- Document References

Requirements

- Design
- Allocation
- Constraints
- Interface
- Rules

Technology

- Fabrication Design Rules
- Product Design Rules

PreAmp

Space & Communications

Pre Competitive Advanced Manufacturing Processes

- Contract Sponsor: NIST Advanced Technology Program.
- Timeframe: Mar 1992 Sep 1995.
- Members:

Rockwell	Martin Marietta	Boeing	ADL
Hughes	Step Tools, Inc.	Digital	Battelle

- SCRA
- Results:
 - Software framework for defining and executing rules using AP 210 and AP 220 as the source of data.
 - Facility for defining manufacturing resources.
 - Mentor to AP 210 Translator.
 - Initial examination and analysis of AP 210.
- Standards Used: CD version of AP 210

WD version of AP 220
G.L.Smith, NASA's STEP for Aerospace Workshop

TIGER

Space & Communications

Electronics Computing Support

Team Integrated - Electronic Response

- Contract Sponsor: DARPA program.
- Timeframe: Sep 1995 Mar 1997.
- Members:

Boeing (Seattle & Irving)
 Georgia Tech

Holaday Circuits, Inc.
 SCRA
 ADL

- Results:
 - Enhanced translator, rules definition and execution facilities.
 - Negotiation facility.
 - Integration with thermal analysis tools.
 - Web access to tools.
 - Methodology for rules execution (administration, data extraction, data analysis).
 - Encoded numerous rules to test system concepts.
- Standards Used: DIS WD1 version of AP 210

Boeing - STEP for Electronics

Electronics Computing Support Space & Communications Boeing (working w/ Delco) is supporting the development > of AP 210 translation. Mentor To/From AP 210 To To **Producibility Analysis Durability** Design **Analysis Mentor Analysis** To/From **AP 210 AP 210 Future** To/From Mechanical **AP 210**

Mechanical

1/25/2000

Manufacturing

Mentor to AP 210 Translator

Space & Communications

Electronics Computing Support

Objectives:

- Achieve a seamless data flow within Printed Wiring Board and Assembly (PWB/PWA) Define/Produce processes.
- Deploy a vendor independent mechanism to share
 PWB/PWA data within Boeing, with customers and suppliers.

Approach:

- Support development of the STEP AP 210 standard.
- Acquire a commercial bi-directional STEP DIS AP 210 translator from International TechneGroup Incorporated (ITI):
 - Version A (Oct 98)

- Version B (Jun 99)

- Pilot (Dec 99)

- Production (1Q 00)
- Work with Define/Produce centers to pilot the AP 210 translator.
- Involve other companies as appropriate:
 - Delphi Delco Electronics

Mentor to AP 210 Translator

Boeing - STEP for Electronics

Space & Communications

Electronics Computing Support

Design

Boeing MGC [the Geometries Setting Check. Bignort Preparties Stew Bello Spepart

Submit Producibility Analysis Job

You will receive a-mail when the analysis is compate. This spicasty lases 1-4 nours, depending on design companyly and server had.

International Section Section (1998). Searching the place of the pla

AP 210 To Producibility Analysis

To
Durability
Analysis

Future

AP 210

Analysis

Boeing is presently deploying AP 210 on { several internal projects:

Durability Analysis

Mentor

To/From AP 210

210

Manufacturing

Mechanical

Space & Communications

Electronics Computing Support

Objectives:

- Integrate the electrical PWA design and durability analysis processes to improve quality and reduce flow time.
- Enable designers to introduce structural members such as ribs/stiffeners and/or covers during PWA layout for design optimization.
- Develop methods for predicting fatigue life due to vibration and acoustic pressure field environments.

Approach:

- Use STEP AP 210 standard to transfer PWA design geometry and material definition.
- Develop capabilities to assess durability of printed wiring assembly (PWA) by physics-of-failure method.
- Use and modify public domain codes validated with COTS.
- Provide an integrated process on the designers desktop.

Space & Communications

Electronics Computing Support

Space & Communications

Electronics Computing Support

Integrated Tools

- A metric to identify a failure mechanism and predict time to failure
- Provides assessment of vendor PWAs
- Reduces cost of products by concurrent engineering

Thermal Analysis Vibration Analysis

Mode shape

Failure Assessment

Space & Communications

Electronics Computing Support

Benefits:

- Error reductions, elimination of duplicate data entry.
- Improved quality and flow time, reduced design iterations due to errors.
- Concurrent engineering by allowing flow of data between electrical and analytical modules.

Targeted Applications:

Numerous Boeing projects

Technology Available:

June 1999

Expected Savings When Implemented on Target Applications:

3000 engineering hours per year*

*Estimate only - Boeing is not to be contractually held to this number!

Boeing - STEP for Electronics

Space & Communications

Electronics Computing Support

Design

Submit Productibility Analysis Job

You will receive a-mail when the analysis in complete. The hybrid years 1-4 hours, appending on delays completely and server bad.

**Membrid by: **Bademitted by: **Bademitted Poke, rounds Leyelderboring, com

State hours in house Tracker?

No.

No.

No.

OK.

No.

OK.

No.

No.

OK.

No.

No.

No.

OK.

No.

**

To Producibility Analysis AP 210

To Durability Analysis

Future

Analysis

Boeing is presently Deploying AP 210 on several internal * projects:

Producibility Analysis

Mentor

To/From AP 210

AP 210

Manufacturing

1/25/2000

Space & Communications

Electronics Computing Support

Objectives:

- Deliver a new PWA producibility review process that enables review team member interaction with on-line tools and eliminates slow paper flow times.
- Improve product quality and cost by reducing first-design release rejections through identification of producibility issues earlier in the PWA development cycle.

Approach:

- Apply team from Define, Produce, and Information Systems groups.
- Implement Manufacturing Resource Editor, Producibility Rules Facility, Negotiation Facility, and new producibility process. Validate process change results.

Producibility Schematic

What Makes PWA Designs Producible?

Space & Communications

Electronics Computing Support

Can be built with available:

- Manufacturing equipment
- Processes
- Components

Requires a minimum of:

- Process steps
- Second assembly steps

Can be easily:

- Tested
- Installed
- Repaired
- Recycled/Destroyed

Space & Communications

Electronics Computing Support

New Process Data Flow

Produc	ibility Analys	sis for PW	۹:	B169 <u>-7</u> 876	2-4						
	PWA Description:			descript of	oduci	bility	Anai	VSIS			
	PWA Rev	ision:		0							
						D					1 4
Analys	is Summary:					Ru	le Su	mma	ry Spi	reads	neet
	Analysis	Code:		090919981	15546						
Initiation Date & Time:		9/9/98	11:55:46								
Completion Date & Time:		9/9/98	11:57:46								
	Individua	I Submittii	ng Analysis	smithg							
	Rules Exe	Rules Executed:		53							
	Possible	Possible Rule Violations:		6							
	Possible	Guideline	Violations:	6							
Docum	ent Legend:										
IPG	Irving Prod	lucibility Gu	idelines 201	1-1000-002	, Rev E						
PLP	Part Librai	y Procedur	es Manual,	TBD							
Analys	is Detail:										
Doc	Doc Sec	R/G	P/F	Rule Num	Rule Ver	Rule Nam	ie				
PLP	1.0	Guideline	Fail	Rule213	202.12						Constraints
IPG	3.2.2	Guideline	Pass	Rule130	807.47	Check PW	/A Layer Co	onstruction	(Balanced	Layers)	
IPG	3.2.2	Guideline	Pass	Rule111	382.47	Check PW	/A Layer Co	onstruction	(Even Laye	ers)	
IPG	3.2.6	Rule	Pass	Rule146	171.10	Check PW	A for Conn	ectors on E	Both Sides		
IPG	3.2.7	Rule	Pass	Rule42	355.40	Check Gro	ound Plane	Position			
IPG	3.2.7	Rule	Pass	Rule36	342.39	Check Pov	wer Plane F	Position			
IPG	3.2.9	Rule	Pass	Rule24	217.36	Check Minimum PWB Dimensions to Determine Tooling Strip Use					
IPG	3.2.9	Rule	Fail	Rule12	249.38	Check Minimum PWB Dimensions for Wave Solder equipment					
IPG	3.2.9	Rule	Pass	Rule10	212.36	Check Maximum PWB Dimensions for Wave Solder equipment					
IPG	3.2.9	Rule	Pass	Rule9	225.42	Check Maximum PWB Dimensions for Surface Mount equipment					
IPG	3.2.9	Rule	Pass	Rule7	231.36				ns for Surfa		quipment
IPG	3.3.1	Rule	Pass	Rule174	183.17	Check PWA support for Though Hole Automation					
IPG	3.3.2	Rule	Fail	Rule176	147.25	Check PWA Requirement for In-Circuit Test					
IPG	3.3.4	Rule	Fail	Rule175	180.19	Check PWA support for Surface Mount Automation					
IPG	3.4.1	Rule	Pass	Rule154	569.28	Check Far	Side Limita	ations for D	ual Vapor F	Phase Solde	er Component

Space & Communications Electronics Computing Support

Space & Communications Electronics Computing Support

Space & Communications

Electronics Computing Support

Implementation Phases

Prototype (3/98 - 9/98)	Evaluation (12/98 - 6/99)	Production (6/99 -)
Target: Irving	• Target: EP	Target: Boeing
Developmental AP 210	ITI Version A AP 210 Translator	 ITI Version B AP 210 Translator
Translator • Limited Issue	 Enhanced Issue Tracker capability 	 Full Issue Tracker capability
Tracker capability	• Enhanced rule set	• Full rule set
Limited rule set	Initiated 12/11	Extend into:
• Completed 9/30		Testability AnalysisDesign AnalysisLibrary Verification

Space & Communications

Electronics Computing Support

Benefits:

- Less rework
- Fewer design iterations
- Reduced burden on producibility reviewers

Targeted Application:

- Electronics Products organization
- Irving & El Paso, TX PWA Facilities

Technology Available:

October 1998

Expected Savings When Implemented on Target Application:

1500 to 3000 hours per year*

*Estimate only - Boeing is not to be contractually held to this number!

Mechanical

1/25/2000

Boeing - STEP for Electronics

Space & Communications **Electronics Computing Support** Boeing is presently deploying AP 210 on several internal projects: Electrical Mechanical Interface **AP 210 AP 210** To To **Producibility Analysis Durability** Design **Analysis Mentor Analysis** To/From **AP 210 AP 210 Future** To/From Mechanical **AP 210**

Manufacturing

Space & Communications

Z Electronics Computing Support

Objectives:

- Integrate electrical PWA design with mechanical enclosure design to improve quality and reduce flow time.
- Implement a bi-directional exchange of electrical (electronic) and mechanical product and packaging information for PWAs using the STEP standard.
- Establish data exchange repository and configuration management process.

Approach:

- Replace the existing proprietary exchange format (IDF) with a broader international standard (STEP) to allow the exchange of additional information.
- Migrate mechanical and electrical converters to commercial translators.
- Provide prototype to support electronic and mechanical products developed in Electronic Products design centers.

Space & Communications

Electronics Computing Support

Mentor Version 8 Design Process

Exchange of data is performed using IGES or/and IDF. IDF is company proprietary.

Space & Communications

Electronics Computing Support

Concerns with Current Process

- Exchange format is vendor proprietary.
- Existing problems with IDF translators replacing complex object with primitives, loss of data intelligence, font changes.
- The transfer of data back to Electrical system from Mechanical system is incomplete.
- No association between systems a change on one system is not reflected in the other.
- No mechanism to provide configuration management.

Exchange of data independent of process or tools. Frequency controlled by unique Business needs. Exchange of intelligent data. G.L.Smith, NASA's STEP for Aerospace Workshop

Space & Communications Electronics Computing Support

Data Transfer Between Systems

AP 203 cc 2 - Geometrically Bounded Wireframe Models, Surface Models or Both (AP 210 cc 15)

AP 203 cc 6 - Advanced B-Rep (AP 210 cc 17)

Space & Communications

Electronics Computing Support

Proposed Final Architecture

Space & Communications **=**

Electronics Computing Support **=**

Benefits:

- Error reductions, elimination of duplicate data entry.
- Improved quality and flow time, reduce design iterations due to errors.
- Concurrent Engineering by allowing flow of data between electrical/mechanical systems.

Targeted Application:

Numerous Boeing projects

Technology Available:

June 1999

Expected Savings When Implemented on Target Application:

2000 engineering hours per year*

*Estimate only - Boeing is not to be contractually held to this number!

1/25/2000

Boeing - STEP for Electronics

AP 210 Modularization

Space & Communications

Electronics Computing Support

- Supporting PDES, Inc. STEP modularization activity.
- Developing Statement of Work / Direction.
- Identifying useful areas for the module creation supporting:
 - Customers
 - Design
 - Fabrication
 - Other standards
 - IDF
 - GenCAM
 - EDIF
 - others as required
 - Ongoing internal projects
- Supporting interoperability with other APs.

1/25 For Help, press F1

AP 210 PWA Viewer

Space & Communications Electronics Computing Support AP210Viewer - [cable_db.stp] _ B × File Edit View Window Help **3 2 ?** - T1 - R30 - R26 - R25 -R24 R23 -R22 R21 R20 R19 R18 R17 R16 R15 R14 R13 R12 - R11 R10 - R9 - R8 - R7 R6 R5 R4 R3 R2 R1 Q3 Q2 01 Q1 JAN2N3739

PWA/PWB Inwork Design Repository

Space & Communications

Electronics Computing Support

Implementation

Space & Communications

Electronics Computing Support

Challenges

Data Acquisition Challenges:

- Acquiring complete PWA/PWB data in the form of STEP AP 210 (many translators):
 - CD Translator (PreAmp 96)
 - DIS WD1 Translator (TIGER 97)
 - DIS Translators, (ITI)
- Expanding STEP data for end users.
- Identifying what STEP data is missing.
- Extracting specific STEP data.

Performance Challenges:

 Loading hundreds of thousands of objects into object systems (STEP AP 210 data).

Implementation

Space & Communications

Electronics Computing Support

Challenges

Cultural Challenges:

- Educating the community about AP 210 and its advantages.
- Enhancing the current process of human inspection with process automation analysis and information capture.

Configuration Challenges:

- Provide a configuration and management environment to create and modify rules.
- Providing a intuitive methodology for individuals to write producibility rules:
 - Administration rules
 - Data Extraction/Verification rules
 - Data Analysis rules

Summary

Space & Communications

Electronics Computing Support

- Boeing has been working on AP 210 since its inception.
- Boeing is supporting the development of AP 210 translation:
 - Mentor to/from AP 210
- Boeing is presently deploying AP 210 on several projects:
 - Durability Analysis
 - Producibility Analysis
 - Electrical Mechanical Interface
 - AP 210 Viewer
- Boeing is planning its future architecture around AP 210.
- Boeing has invested extensively (time and money) in AP 210 development and implementation.

STEP for Electronics is available and a viable standard for Product Data Exchange!

For More Information

Space & Communications

Electronics Computing Support

Contact:

Gregory L. Smith Boeing Space & Communication Group P.O.Box 3999, 8R-03 Seattle, WA 98124-2499

Gregory.L.Smith@Boeing.com (253) 773-5947